

Advanced Guidance

(Guided Mode)

Leonard Hall

First a quick update

- Attitude control
 - thrust vector and heading control seems to be working well
- Separation of ACRO and PILOT parameters
 - Expo, Rate TC, Roll / Pitch / Yaw rates (no more Rate_P)
- S-Curves are in and operating well.
 - Fixed short waypoint problem in 4.2
 - Pause mission with calculation of tangential acceleration
 - Separate Corner acceleration Should we have a parameter?
- Real time S-Curves
 - Reduce reaction time to small changes
 - Apply Real time S-Curves to Guided mode
- Position Control
 - Prioritize cross track error over tangential error
 - Removed override in precision landing (uses Real Time S-Curves)
- Remove Loiter from Takeoff and Landing

Max Corner Acceleration

Is it worth an extra parameter?

How do we control an aircraft

- We provide directions.....
 - What directions?
- Are the directions complete?
 - How do we handle the ambiguities?
- Do we provide instructions on HOW to get there?
- Highly dependent on aircraft dynamics!
- Users tend to be Narcissistic
 - They want a command to be only just complicated enough to completely handle their current problem.
 - All unspecified behaviour should support their current problem.

How do we control an aircraft

- Attitude
 - Roll, Pitch, Yaw
 - Roll, Pitch, Yaw Rate
 - Roll Rate, Pitch Rate, Yaw Rate
- Altitude
 - Throttle
 - Vertical Rate
 - Vertical Position
- What do we provide the User?
 - Users Answer: What I think I need before I work out that I need something else.

How do we control an aircraft

How do people think about providing directions?

- Destination and limits
 - Go to this location with a maximum speed of X
 - Planning is done in the AutoPilot
 - Simple for User but inflexible
 - What limits should be defined in the message?
- Position, Velocity, Acceleration
 - This is exactly what I want you to be doing right now
 - Planning is done by the User
 - Complex for User but flexible

MAVLINK

- The Micro Air Vehicle Link is a communication protocol for unmanned systems
- LGPL license
- Vehicle agnostic
- Three general control commands:
 - SET_POSITION_TARGET_LOCAL_NED
 - SET_POSITION_TARGET_GLOBAL_INT
 - SET_ATTITUDE_TARGET
- Matching reply or status commands
- Potential to add additional commands

SET_ATTITUDE_TARGET (#82)

- Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0)
- Body roll rate rad/s
- Body pitch rate rad/s
- Body yaw rate rad/s
- Collective thrust ArduCopter also supports vertical velocity
- 3D thrust setpoint in the body NED frame, normalized to -1..1
- ATTITUDE_TARGET_TYPEMASK
 - Ignore body roll rate
 - Ignore body pitch rate
 - Ignore body yaw rate
 - Use 3D body thrust setpoint instead of throttle
 - Ignore throttle (could be used to select climb rate)
 - Ignore attitude

SET_ATTITUDE_TARGET (#82)

- Attitude + Throttle
- Attitude + Angular Velocity + Throttle
- Angular Velocity + Throttle
- Attitude + Vertical Velocity
- Attitude + Angular Velocity + Vertical Velocity
- Angular Velocity + Vertical Velocity
- What limits should the autopilot apply?
 - Vertical Velocity requires an angle limit
 - Throttle does not require an angle limit
- 6 Control Combinations

Attitude + Angular Velocity

- How can we specify both an attitude and an angular velocity?
 - The command specifies what the current state should be.
 - The command does not specify HOW to achieve the commanded state.
- Example: A person is facing north
 - Attitude only:
 - Face South
 - Attitude + Rate:
 - Face North turning CW at 10 deg/s
 - Wait 18 seconds
 - Face South turning 0 deg/s

SET_ATTITUDE_TARGET (#82)

Control input NOT supported by this Message:

- Partial attitude specifications:
 - Roll, Pitch + Rate Yaw
- Relative attitude changes:
 - Yaw by X degrees
- Altitude (Vertical control is not formally part of the message)
- Single axis rate commands (others must assume zero)
- Stabilize and Alt_Hold control is not possible with this message alone

SET_ATTITUDE_TARGET (#82)

- Provides a complete attitude control solution
- Provides a FAST response when angular velocity is provided
- Any attitude interface can be replicated with the right transformations.
- People keep discussing some sort of Stabilize or Alt_Hold instruction.
 - Is this simply the first thing people think of because it is how they control the aircraft?
 - Is there some real advantage for a companion computer, something I am missing?

 lon_int Y Position in WGS84 frame lgnore acceleration X lgnore acceleration Z Use force instead of acceleration lgnore yaw lgnore yaw lgnore yaw rate MAV_FRAME_LOCAL_NED = 1, MAV_FRAME_GLOBAL = 0 or 5,

Navigation Control:

- Position, Velocity, Acceleration
- Position, Velocity
- Position
- Velocity, Acceleration
- Velocity
- Acceleration

Heading Control:

- Heading, Heading Rate
- Heading
- Heading Rate

• Separation of X,Y and Z axis may be achieved using the ignore flags

Versatile, Trusted, Open

- 108 combinations 756 with frames
- No way to enable or disable stabilization of ignored axis
 - Stop Position Stabilization
 - Stop Position and Velocity Stabilization
 - 300 control combinations 2100 with frames
- Does not specify limits or path when velocity and acceleration are ignored
 - Fastest?
 - Straight line?
- ArduCopter supports
 - 18 Basic Combinations
 - 36 including disabling XY Stabilization
 - 2 straight line options

Oh, I forgot to mention:

- We should be able to swap seamlessly between control systems!
- We want to be able to control yaw manually!
- Collision avoidance should work!
- We should not breach the fence!
- Should the reply message be:
 - What we sent,
 - Our current state?
 - Our current target state?

"But I think it should be....."

- We should be able to swap seamlessly between control systems!
- We want to be able to control yaw manually!
- Collision avoidance should work!
- We should not breach the fence!

- Handle collision avoidance at the position controller level
 - Bendy ruler algorithm may work effectively based only on the information in the position controller.
 - Fence limits may also be implemented at the Pos Control level.
 - This may generalise and extend these features to all Position controller-based modes. (Loiter, Follow, Pos Control)

• Should the reply message be:

- What we sent, OR
- Our current state? OR
 - Our current target state?
- Time stamp may be used to differentiate.
- We need some formal decision we can live with.
- I would suggest
 - what was sent with received time as time stamp
 - Full message with current time stamp representing current target (not current state)

Guided Command

- Guided command
 - Last instruction from the companion computer
- Real Time S-Curves
 - Project last instruction forward in time
 - Remove integration errors
 - Generate a Jerk limited "Target" trajectory following the command
- Estimation
 - Combine sensor data to generate Pos, Vel, Accel
- Position Controller
 - Make the Estimation as close as possible to the Target

ARDUPILOT Versatile, Trusted, Open

Guided mode

Pos Control Tools:

- input_pos_xyz
- input_pos_vel_accel (xy / z)
- input_vel_accel (xy / z)
- input_accel (xy / z)
- stop_pos_xy_stabilisation
- stop_vel_xy_stabilisation

Waypoint Navigation

set_wp_destination

Pos Control Tools:

- Real time S-Curve trajectory
- Natural blending between commands
- Mix and match without discontinuity
- Path depends on state and limits
- Waypoint Navigation
 - Trigonometric S-Curve path
 - Strict path following
 - Initialised using stopping point
 - Discontinuous if called when moving

Real Time S-Curves

- Accepts Commanded
 - Position
 - Velocity
 - Acceleration
- Given Limits
 - Velocity
 - Acceleration
 - Jerk
- Move Pos, Vel, Accel towards commanded Pos, Vel, Accel using a Kinematically consistent, Jerk limited path.
- Output is an Acceleration

Real Time S-Curves

Guided Mode Future Development

- Structure Guided mode handling of SET_POSITION_TARGET into vertical and horizontal functions
- Could we use SET_ATTITUDE_TARGET and SET_POSITION_TARGET together:
 - Attitude for thrust vector control.
 - Pos, Vel, Accel Z to control altitude.
 - Is it worth the complexity?
- Add a new message based on Destination + Limits
 - SET_ATTITUDE_LIMITS Probably won't help users
 - SET_POSITION_LIMITS Potentially useful for users
 - Stabilize / Alt Hold equivalent command hard to justify when SET_ATTITUDE_TARGET is so complete.
- LUA scripting
 - Great care needs to be used when defining interface functions.
 - Guided mode interface is limited by the Mavlink commands.
 - Direct access to AC_PosControl and AC_AttitudeControl is desirable
 - Custom LUA flight mode may be required for safe operation.

Looking forward to 4.3

- Ground / Air transition handling
 - Throttle time constant
 - Ground separation detection
- Complete Guided Mode implementation
 - Finalize and implement "GET" messages
- S-Curves
 - Add function to implement fast stop to assist WP based guided
- Follow Mode
 - Use Real time S-Curves to generate high-rate trajectory data
- Collision Avoidance Structure development
 - Support natively as some sort of Position Controller integration

Questions

