
Advanced Guidance
(Guided Mode)

Leonard Hall

• Attitude control
• thrust vector and heading control seems to be working well

• Separation of ACRO and PILOT parameters
• Expo, Rate TC, Roll / Pitch / Yaw rates (no more Rate_P)

• S-Curves are in and operating well.
• Fixed short waypoint problem in 4.2
• Pause mission with calculation of tangential acceleration
• Separate Corner acceleration – Should we have a parameter?

• Real time S-Curves
• Reduce reaction time to small changes
• Apply Real time S-Curves to Guided mode

• Position Control
• Prioritize cross track error over tangential error
• Removed override in precision landing (uses Real Time S-Curves)

• Remove Loiter from Takeoff and Landing

First a quick update

60° Turn

Snap = 5 m/s4
Jerk = 1 m/s3
Accel = 2 m/s2
Vel = 10 m/s
Corner Rad = 5 m
Corner Accel = 2 m/s2

65° Turn

Snap = 5 m/s4
Jerk = 1 m/s3
Accel = 2 m/s2
Vel = 10 m/s
Corner Rad = 5 m
Corner Accel = 2 m/s2

190° Turn

Snap = 5 m/s4
Jerk = 1 m/s3
Accel = 2 m/s2
Vel = 10 m/s
Corner Rad = 5 m
Corner Accel = 2 m/s2

190° Turn

Snap = 5 m/s4
Jerk = 1 m/s3
Accel = 2 m/s2
Vel = 10 m/s
Corner Rad = 5 m
Corner Accel = 4 m/s2

190° Turn

Snap = 5 m/s4
Jerk = 1 m/s3
Accel = 2 m/s2
Vel = 10 m/s
Corner Rad = 50m
Corner Accel = 4 m/s2

90° Turn

Snap = 5 m/s4
Jerk = 1 m/s3
Accel = 2 m/s2
Vel = 10 m/s
Corner Rad = 20m
Corner Accel = 2 m/s2

90° Turn

Snap = 5 m/s4
Jerk = 1 m/s3
Accel = 2 m/s2
Vel = 10 m/s
Corner Rad = 20m
Corner Accel = 4 m/s2

Is it worth an extra parameter?

Max Corner Acceleration

• We provide directions……
• What directions?

• Are the directions complete?
• How do we handle the ambiguities?

• Do we provide instructions on HOW to get there?

• Highly dependent on aircraft dynamics!

• Users tend to be Narcissistic
• They want a command to be only just complicated enough to completely handle

their current problem.
• All unspecified behaviour should support their current problem.

How do we control an aircraft

• Attitude
• Roll, Pitch, Yaw
• Roll, Pitch, Yaw Rate
• Roll Rate, Pitch Rate, Yaw Rate

• Altitude
• Throttle
• Vertical Rate
• Vertical Position

• What do we provide the User?
• Users Answer: What I think I need before I work out that I need something

else.

How do we control an aircraft

How do people think about providing directions?

• Destination and limits
• Go to this location with a maximum speed of X
• Planning is done in the AutoPilot
• Simple for User but inflexible
• What limits should be defined in the message?

• Position, Velocity, Acceleration
• This is exactly what I want you to be doing right now
• Planning is done by the User
• Complex for User but flexible

How do we control an aircraft

• The Micro Air Vehicle Link is a communication protocol for unmanned
systems

• LGPL license
• Vehicle agnostic

• Three general control commands:
• SET_POSITION_TARGET_LOCAL_NED
• SET_POSITION_TARGET_GLOBAL_INT
• SET_ATTITUDE_TARGET

• Matching reply or status commands
• Potential to add additional commands

MAVLINK

• Attitude quaternion (w, x, y, z order, zero-rotation is 1, 0, 0, 0)

• Body roll rate rad/s

• Body pitch rate rad/s

• Body yaw rate rad/s

• Collective thrust ArduCopter also supports vertical velocity

• 3D thrust setpoint in the body NED frame, normalized to -1 .. 1

• ATTITUDE_TARGET_TYPEMASK
• Ignore body roll rate
• Ignore body pitch rate
• Ignore body yaw rate
• Use 3D body thrust setpoint instead of throttle
• Ignore throttle (could be used to select climb rate)
• Ignore attitude

SET_ATTITUDE_TARGET (#82)

• Attitude + Throttle

• Attitude + Angular Velocity + Throttle

• Angular Velocity + Throttle

• Attitude + Vertical Velocity

• Attitude + Angular Velocity + Vertical Velocity

• Angular Velocity + Vertical Velocity

• What limits should the autopilot apply?
• Vertical Velocity requires an angle limit
• Throttle does not require an angle limit

• 6 Control Combinations

SET_ATTITUDE_TARGET (#82)

• How can we specify both an attitude and an
angular velocity?
• The command specifies what the current state

should be.
• The command does not specify HOW to achieve

the commanded state.

• Example: A person is facing north
• Attitude only:

• Face South

• Attitude + Rate:
• Face North turning CW at 10 deg/s
• Wait 18 seconds
• Face South turning 0 deg/s

Attitude + Angular Velocity

Control input NOT supported by this Message:

• Partial attitude specifications:
• Roll, Pitch + Rate Yaw

• Relative attitude changes:
• Yaw by X degrees

• Altitude (Vertical control is not formally part of the message)

• Single axis rate commands (others must assume zero)

• Stabilize and Alt_Hold control is not possible with this message alone

SET_ATTITUDE_TARGET (#82)

• Provides a complete attitude control solution

• Provides a FAST response when angular velocity is provided

• Any attitude interface can be replicated with the right
transformations.

• People keep discussing some sort of Stabilize or Alt_Hold instruction.
• Is this simply the first thing people think of because it is how they control the

aircraft?

• Is there some real advantage for a companion computer, something I am
missing?

SET_ATTITUDE_TARGET (#82)

SET_POSITION_TARGET

• SET_POSITION_TARGET_LOCAL_NED (#84)
• X m X Position in NED frame

• Y m Y Position in NED frame

• Z m Z Position in NED frame

• SET_POSITION_TARGET_GLOBAL_INT (#86)
• lat_int X Position in WGS84 frame

• lon_int Y Position in WGS84 frame

• Common
• vx m/s X velocity in NED frame

• vy m/s Y velocity in NED frame

• vz m/s Z velocity in NED frame

• afx m/s/s X acceleration or force

• afy m/s/s Y acceleration or force

• afz m/s/s Z acceleration or force

• yaw rad yaw setpoint

• yaw_rate rad/s yaw rate setpoint

• POSITION_TARGET_TYPEMASK
• Ignore position x

• Ignore position y

• Ignore position z

• Ignore velocity x

• Ignore velocity y

• Ignore velocity z

• Ignore acceleration x

• Ignore acceleration y

• Ignore acceleration z

• Use force instead of acceleration

• Ignore yaw

• Ignore yaw rate

• MAV_FRAME - LOCAL_NED
• MAV_FRAME_LOCAL_NED = 1,

• MAV_FRAME_LOCAL_OFFSET_NED = 7,

• MAV_FRAME_BODY_NED = 8,

• MAV_FRAME_BODY_OFFSET_NED = 9

• MAV_FRAME - GLOBAL_INT
• MAV_FRAME_GLOBAL = 0 or 5,

• MAV_FRAME_GLOBAL_RELATIVE_ALT = 3 or 6,

• MAV_FRAME_GLOBAL_TERRAIN_ALT = 10 or 11

SET_POSITION_TARGET

Navigation Control:

• Position, Velocity, Acceleration

• Position, Velocity

• Position

• Velocity, Acceleration

• Velocity

• Acceleration

Heading Control:

• Heading, Heading Rate

• Heading

• Heading Rate

• Separation of X,Y and Z axis may be achieved using
the ignore flags

• 108 combinations – 756 with frames

• No way to enable or disable stabilization of ignored
axis

• Stop Position Stabilization
• Stop Position and Velocity Stabilization
• 300 control combinations – 2100 with frames

• Does not specify limits or path when velocity and
acceleration are ignored

• Fastest?
• Straight line?

• ArduCopter supports
• 18 Basic Combinations
• 36 including disabling XY Stabilization
• 2 straight line options

Oh, I forgot to mention:

• We should be able to swap seamlessly between control systems!

• We want to be able to control yaw manually!

• Collision avoidance should work!

• We should not breach the fence!

• Should the reply message be:
• What we sent,

• Our current state?

• Our current target state?

SET_POSITION_TARGET

“But I think it should be………….”

• We should be able to swap seamlessly between control systems!

• We want to be able to control yaw manually!

• Collision avoidance should work!

• We should not breach the fence!

• Handle collision avoidance at the position controller level
• Bendy ruler algorithm may work effectively based only on the information in

the position controller.

• Fence limits may also be implemented at the Pos Control level.

• This may generalise and extend these features to all Position controller-based
modes. (Loiter, Follow, Pos Control …..)

SET_POSITION_TARGET

• Should the reply message be:
• What we sent,

OR
• Our current state?

OR
• Our current target state?

• Time stamp may be used to differentiate.

• We need some formal decision we can live with.

• I would suggest
• what was sent with received time as time stamp
• Full message with current time stamp representing current target (not current state)

GET_POSITION_TARGET

GET_POSITION_TARGET

• Guided command
• Last instruction from the companion computer

• Real Time S-Curves
• Project last instruction forward in time

• Remove integration errors

• Generate a Jerk limited “Target” trajectory following the command

• Estimation
• Combine sensor data to generate Pos, Vel, Accel

• Position Controller
• Make the Estimation as close as possible to the Target

GET_POSITION_TARGET

Guided mode

Pos Control Tools:
• input_pos_xyz

• input_pos_vel_accel (xy / z)

• input_vel_accel (xy / z)

• input_accel (xy / z)

• stop_pos_xy_stabilisation

• stop_vel_xy_stabilisation

Waypoint Navigation
• set_wp_destination

Pos Control Tools:
• Real time S-Curve trajectory

• Natural blending between commands

• Mix and match without discontinuity

• Path depends on state and limits

• Waypoint Navigation
• Trigonometric S-Curve path

• Strict path following

• Initialised using stopping point

• Discontinuous if called when moving

• Accepts Commanded
• Position
• Velocity
• Acceleration

• Given Limits
• Velocity
• Acceleration
• Jerk

• Move Pos, Vel, Accel towards commanded Pos, Vel, Accel using a
Kinematically consistent, Jerk limited path.

• Output is an Acceleration

Real Time S-Curves

Real Time S-Curves

• Structure Guided mode handling of SET_POSITION_TARGET into vertical and horizontal functions

• Could we use SET_ATTITUDE_TARGET and SET_POSITION_TARGET together:
• Attitude for thrust vector control.
• Pos, Vel, Accel Z to control altitude.
• Is it worth the complexity?

• Add a new message based on Destination + Limits
• SET_ATTITUDE_LIMITS – Probably won’t help users
• SET_POSITION_LIMITS – Potentially useful for users
• Stabilize / Alt Hold equivalent command – hard to justify when SET_ATTITUDE_TARGET is so complete.

• LUA scripting
• Great care needs to be used when defining interface functions.
• Guided mode interface is limited by the Mavlink commands.
• Direct access to AC_PosControl and AC_AttitudeControl is desirable
• Custom LUA flight mode may be required for safe operation.

Guided Mode Future Development

• Ground / Air transition handling
• Throttle time constant
• Ground separation detection

• Complete Guided Mode implementation
• Finalize and implement “GET” messages

• S-Curves
• Add function to implement fast stop to assist WP based guided

• Follow Mode
• Use Real time S-Curves to generate high-rate trajectory data

• Collision Avoidance Structure development
• Support natively as some sort of Position Controller integration

Looking forward to 4.3

Questions

